УДК 681.7.068

А.Л. Бутвина, Л.Н. Бутвина, А.Г. Охримчук

Институт общей физики им. А.М. Прохорова РАН, Научный центр волоконной оптики им. Е.М. Дианова, г. Москва, Россия

ОДНОМОДОВЫЕ ЭКСТРУЗИОННЫЕ ПОЛИКРИСТАЛЛИЧЕСКИЕ СВЕТОВОДЫ ГАЛОГЕНИДОВ СЕРЕБРА С ПОТЕРЯМИ МЕНЬШЕ 1ДБ/М ДЛЯ СО₂ ЛАЗЕРА

Впервые разработаны и изготовлены методом экструзии одномодовые поликристаллические световоды среднего ИК диапазона с длиной волны отсечки 10 мкм с оптическими потерями фундаментальной моды меньше 1 дБ/м на длине волны 10,6 мкм CO₂ лазера. Измеренные оптические потери сегментированного одномодового поликристаллического световода с малым контрастом 0,01 показателя преломления AgCl_{0.5}Br_{0.55}AgCl_{0.55}Br_{0.45} составили 0,8 дБ/м. Впервые разработано и изготовлено поликристаллическое сегментированное одномодовое волокно со ступенчатым профилем на длине волны 10,6 мкм и с высоким контрастом 0,05 показателя преломления AgCl_{0.25}Br_{0.75} / AgCl_{0.5}Br_{0.55} и наименьшими в мире оптическими потерями 0, 5 дБ/м из известных авторам. Порог лазерного разрушения непрерывного CO₂ лазера составил величину 200 кВт/см². Впервые изготовлены одномодовые поликристаллические нано- и микроструктурированные экструзионные световоды галогенидов серебра с сердцевиной с наименьшим диаметром 17 мкм.

Ключевые слова: ИК экструзионные поликристаллические световоды, одномодовые световоды на длине волны 10,6 мкм, одномодовые световоды для СО₂ лазеров, оптические потери, порог лазерного разрушения, дисперсия в среднем ИК, галогениды серебра.

A.L. Butvina, L.N. Butvina, A.G. Okhrimchuk

Institute of General Physics named after A.M. Prokhorov RAS, Scientific Center for Fiber Optics named after E.M. Dianov, Moscow, Russia

SINGLE-MODE EXTRUSION POLYCRYSTALLINE LIGHT GUIDES OF SILVER HALOGENIDES WITH LOSSES LESS THAN 1DB / M FOR CO₂ LASER

For the first time, single-mode polycrystalline mid-IR optical fibers with a cutoff wavelength of 10 μ m with an optical loss of the fundamental mode less than 1 dB / m at a wavelength of 10.6 μ m of a CO2 laser have been developed and manufactured by extrusion. The measured optical loss of a segmented single-mode polycrystalline fiber with a low contrast of 0.01 refractive index AgCl_{0.55}Br_{0.5/}AgCl_{0.55}Br_{0.45} was 0.8 dB / m. For the first time, a polycrystalline segmented single-mode fiber at a wavelength of 10.6 μ m with a stepped profile and a high contrast of 0.05 refractive index AgCl_{0.25}Br_{0.57}/AgCl_{0.55}Br_{0.45} and the lowest in the world, as we know, optical losses of 0.5 dB / m. The threshold for laser destruction of a cw CO2 laser was 200 kW / cm². For the first time, single-mode polycrystalline nano- and micro-structured extrusion fibers of silver halides with a smallest core of 17 μ m have been fabricated.

Keywords: IR extrusion polycrystalline fibers, single-mode fibers at a wavelength of 10,6 μ m, single-mode fibers for CO2 lasers, optical losses, laser damage threshold, dispersion in mid-IR, silver halides.

Введение

Поликристаллические гибкие оптические волокна из кристаллов твердых растворов галогенидов серебра $AgCl_xBr_{1-x}$ (0 < x < 1) имеют широкое окно прозрачности в среднем инфракрасном (ИК) диапазоне (длины волн 3-15 мкм). Кристаллы галогенидов серебра пластичны, нетоксичны, негигроскопичны, однако обладают значительной фоточувствительностью. ИК волокна из этих кристаллов производятся методом экструзии¹. Фактические потери в световодах из кристаллов галогенидов серебра превышают теоретически возможные на 1-2 порядка. Актуальные оптические потери как в безоболочечных, так и в оболочечных экструзионных световодах вызваны в основном рассеянием и поглощением 3-мерными дефектами (порами и коллоидами серебра), возникающими в процессе пластической деформации при экструзии¹. Снижение этих потерь весьма актуально. Оно увеличит длины применяемых ИК-волокон в разнообразных применениях, в частности в медицине, для передачи излучения СО₂ лазера. Создание ярких волоконных источников среднего ИК-диапазона также требует разработки одномодовых кристаллических световодов с малыми оптическими потерями. Астрономические ИК-интерферометры также нуждаются в одномодовых ИК-световодах с малыми потерями.

Актуальность работы по снижению оптических потерь в одномодовых поликристаллических ИК-световодах следует из высокого уровня оптических потерь (2–20 дБ/м) в уже опубликованных работах [2–5]. Материалы для поликристаллических волокон должны удовлетворять многим требованиям. Во-первых, кристалл должен быть пластически деформируем в области температур, выдерживаемых экструзионной камерой, со скоростью больше чем 1 см/мин. Во-вторых, кристалл должен быть оптически изотропным, так как зерна поликристаллического волокна значительно (десятки градусов) разориентированы по своим кристаллографическим направлениям. Поэтому для уменьшения рассеяния в волокне кристалл должен иметь кубическую решетку. И, наконец, процесс рекристаллизации должен быть заторможен в условиях эксплуатации волокна для предотвращения деградации его оптических и механических свойств. Кроме того, кристаллы должны иметь низкие оптические потери в среднем инфракрасном диапазоне. Подходящими кристаллами являются твердые сильные растворы галогенидов серебра и некоторых других металлов.

Развитие экструзионных поликристаллических инфракрасных оболочечных световодов из негигроскопического и нетоксического материала кристаллов твердых растворов галогенидов серебра AgCl–AgBr–AgI с широкой областью (длины волн 20–2,5 мкм или волновые числа 500–4000 см⁻¹) малых оптических потерь (0,1–1 дБ/м) со стабильными характеристиками позволяет проводить количественные долговременные исследования⁶. Многолетняя стабильность спектра пропускания этих световодов достигается глубокой очисткой исходных монокристаллов для изготовления сердцевины и оболочки и их совместной экструзией в оболочечный нано- и микроструктурированный световод¹.

1. Экспериментальные методы

Методы изготовления длинных поликристаллических оптических волокон фундаментально отличаются от вытягивания кварцевых световодов. Лучшие результаты получены методом экструзии, где кристаллическая заготовка продавливается через полированную фильеру. В рамках данной работы мы разработали новую экструзионную установку на порядок с улучшенной равномерностью хода пресс-штемпеля с максимальным усилием до 30 т. Нами были найдены оптимальные параметры экструзии и технология приготовления составных преформ из кристаллов. Созданная технология ведет к существенному снижению оптических потерь, вызываемых как вакансиоными порами, так и кластерами, и коллоидами серебра, образующимися в процессе экструзии. Поликристаллические волокна галогенидов серебра имеют особые упругие и пластические свойства, отличные от кварцевых световодов, сделанных из хрупких материалов. Поверхность такого кристаллического волокна не нуждается в защитном покрытии. Механические и оптические свойства кристаллических световодов могут меняться в широком диапазоне и определяются дислокационной структурой, структурой зерен, их распределением и составом. Твердорастворное упрочнение в растворах AgCl-AgBr усиливается деформационным упрочнением во время экструзии¹. Оптимизация состава кристаллов и условий экструзии позволяет получать кристалличесие световоды с прочностью 170-200 МПа и упругостью до 1 %¹.

1.1. Изготовление оболочечных кристаллических волокон

Оболочечные поликристаллические световоды со ступенчатым профилем показателя преломления изготавливались экструзией составной кристаллической преформы «стержень-трубка» из камеры диаметром 12 мм через фильеры диаметрами 0,5, 0,7 и 1,0 мм. Для этого методами экструзии в специальных камерах высокого давления изготавливались из соответствующих кристаллов отдельно сердцевина и отдельно поликристаллическая трубка-оболочка. В кристаллах твердых растворов AgCl-AgBr показатель преломления изменяется практически линейно с атомной композицией в диапазоне от 1,97 (для AgCl) до 2,17 (для AgBr) на длине волны 10 мкм. Материалы, используемые для оболочки кристаллического световода, позволили изготовить оболочечные световоды с диаметром сердцевины от 18 мкм до 0,9 мм с числовыми апертурами от 0,14 до 0,5. Благодаря уменьшению оптических потерь в сердцевине и улучшению границы раздела мы достигли уровня потерь меньше 1 дБ/м для диапазона пропускания 3-12 мкм с минимумом около 0,05 дБ/м на длинах волн вблизи 7-10.6 мкм⁷. Оптические потери в световодах измерялись с помощью метода укорочения длины световода (cut-back) на спектрометре «Bruker» модели Vector 22. Мы разработали методы как прямой, так и обратной экструзии комплексной составной заготовки (стержень в трубке) для изготовления оболочечных световодов. Фото части сечения оболочечного кристаллического световода AgCl_{0.25} Br_{0.75} / AgCl_{0.5} Br_{0.5} диаметром 1 мм показано на рис. 1.

Рис. 1. Фотография части сечения оболочечного поликристаллического световода

1.2. Дисперсия в одномодовом кристаллическом волокне

Для изготовления одномодовых световодов со ступенчатым профилем показателя преломления необходимо детальное знание дисперсии показателей преломления в материалах сердцевины и оболочки и поведения волноводной дисперсии в зависимости от структуры световода.

1.2.1. Материальная дисперсия

Дисперсия материала волокна (в пс/мкм/м, что идентично пс/нм/км) определялась по формуле:

$$D_{mat}(\lambda) = -\frac{\lambda}{c} 10^{12} \frac{d^2}{d\lambda^2} n(\lambda), \qquad (1)$$

где λ – длина волны, мкм; *с* – скорость света; м/с, $n(\lambda)$ – показатель преломления материала, который определялся как

$$n(\lambda) = x n_{\text{AgCl}}(\lambda) + (1 - x) n_{\text{AgBr}}(\lambda), \qquad (2)$$

где x – доля AgCl в составе материла AgCl_xBr_{1-x}.

Зависимость показателя преломления для AgCl бралась из данных компании Crystran Ltd. – производителя кристаллических материалов высокой чистоты:

$$n_{\text{AgCl}} = \left(1 + \frac{2,062508\lambda^2}{\lambda^2 - 0,1039054^2} + \frac{0,9461465\lambda^2}{\lambda^2 - 0,2438691^2} + \frac{4,300785\lambda^2}{\lambda^2 - 70,85723^2}\right)^{\frac{1}{2}}.$$
(3)

Зависимость показателя преломления для AgBr (рис. 2) была подобрана методом наименьших квадратов по эмпирической формуле, аналогичной зависимости для AgCl, на основе справочных данных, опубликованных компанией Crystran Ltd. и группой «Кристаллические световоды» Университета Тель-Авива, Израиль (рис. 3).

$$n_{\text{AgBr}} = \left(1,855 + \frac{2,7821\lambda^2}{\lambda^2 - 0,21509^2} + \frac{0,0538\lambda^2}{\lambda^2 - 0,008591^2} + \frac{0,1147\lambda^2}{\lambda^2 - 64,91^2}\right)^{\frac{1}{2}}.$$
 (4)

При этом $\chi^2 = 3E - 5$, $R^2 = 0,986$.

Рис. 3. Показатели преломления (*a*) и материальная дисперсия (б) AgBr и AgCl

Нуль дисперсии достигается при длине волны 4 и 10 мкм для AgCl и AgBr соответственно. Нуль дисперсии для смешанных составов лежит между этими значениями.

1.2.2. Волноводная дисперсия

Дисперсия первой моды в волокне со ступенчатым профилем показателя преломления рассчитывалась по формуле (1), где в качестве $n(\lambda)$ бралась расчетная зависимость эффективного показателя преломления для первой моды $n_{eff} = \frac{\beta}{k_0}$. На рис. 4 приведен пример дисперсии первой моды одномодового ступенчатого волокна (для разных диаметров *d* сердцевины разницы в концентрациях *c*). Значения длины волны отсечки λ_{cut} для каждого волокна обозначены на рис. 4 квадратом.

Рис. 4. Расчетное значение дисперсии для одномодового ступенчатого волокна

Из приведенного графика (см. рис. 4) видно, что значение дисперсии в кристаллах галогенидов серебра мало, и влияние волноводной дисперсии на общее значение дисперсии начинает проявляться при уменьшении сердцевины, но имеет невысокое значение по сравнению с дисперсией кварцевого стекла.

2. Изготовление одномодовых ступенчатых экструзионных световодов

2.1. Изготовление одномодовых ступенчатых экструзионных световодов с малой разницей показателей преломления методом сверления

Для изготовления одномодовых кристаллических световодов со ступенчатым профилем показателя преломления были использованы монокристаллы твердых растворов галогенидов серебра с составами: AgCl_{0.5}Br_{0.5} для сердцевины и AgCl_{0.55}Br_{0.45} для оболочки. Разница в составе AgCl_xBr_{1-x} сердцевины и оболочки была $\Delta x \approx 0,05$, что соответствует разнице показателей преломления $\Delta n = n_{co} - n_{cl} \approx 0,01$. Теоретическая числовая апертура получаемого волокна: $NA = \sqrt{n_{co}^2 - n_{cl}^2} = 0,2$, где n_{co} и $n_{cl} -$ показатели преломления сердцевины и оболочки соответственно.

Для обеспечения одномодового режима в волокне с круглым поперечным сечением сердцевины и со ступенчатым профилем показателя преломления волновой параметр $V = k\rho(n_{co}^2 - n_{cl}^2)^{1/2}$ должен быть меньше: $V < V_0 = 2,405$, где $k = 2\pi/\lambda$, ρ – диаметр сердцевины. Таким образом, диаметр сердцевины должен быть меньше, чем $d(\lambda, NA) = \lambda V_0 / \pi NA$, где NA – числовая апертура волокна. Для длины $\lambda = 10,6$ мкм и при апертуре волокна NA = 0,2 максимальный диаметр сердцевины, при котором реализуется одномодовый режим, должен быть d = 40,5 мкм (см. рис. 4).

Для получения волокон с заданными параметрами в заготовке AgCl_{0 55}Br_{0 45} диаметром 12 мм сверлилось отверстие диаметром 1 мм, в которое было вставлено многомодовое волокно с диаметром сердцевины/оболочки 900/1000 мкм и составами AgCl_{0.5}Br_{0.5}/AgCl_{0.55}Br_{0.45}. Составная заготовка экструдировалась через фильеру диаметром 500 мкм при температуре 200 °C. В полученных одномодовых кристаллических волокнах при числовой апертуре NA = 0,2 диаметр сердцевины был равен 38–35 мкм, оболочки – 500 мкм. Длины установившихся волокон составляли до 10 м. Измерение характеристик волокна производилось с помощью одномодового CO₂ лазера «Плазма» модель LCD-25W. Распределения излучения в ближнем и дальнем поле были изучены с помощью ИК-камер Spiricon Pyrocam-3 и Pyrocam-4. Оболочечные моды подавлялись погружением концов волокон в низкотемпературный сплав. В условиях контроля выхода только фундаментальной моды измеренные минимальные оптические потери в световодах, полученных таким методом, составляли величины 1,2–1,4 дБ/м.

2.2. Одномодовый сегментный световод с малой разницей показателей преломления

Изучение границы раздела в оптическом микроскопе показало наличие коллоидов серебра на границе раздела. Таким образом, основным источником потерь в одномодовых световодах галогенидов серебра со ступенчатым профилем показателя преломления являются потери на границе сердцевины и оболочки, а именно плазмонное поглощение на коллоидах. По сравнению с многомодовыми световодами фактор потерь на границе возрастает многократно, так как фундаментальная мода при отсечке распространяется в оболочку до половины радиуса сердцевины.

Поскольку диаметр одномодового световода на 10,6 мкм составляет порядка десятков микрометров, то для его изготовления требуется сначала экструдировать сердцевину. В предыдущих экспериментах сердцевина вставлялась в оболочку после сверления. Это создавало неудовлетворительное качество поверхности раздела, так как в результате сверления в оболочке возникают дефекты, такие как кластеры серебра и неровности поверхности. В качестве альтернативы сверлению мы разработали способ создания сегментированного световода. В этом способе устраняются дефекты, присущие стандартному сверлению. Для снижения неровностей канал сердцевины в оболочке формируется с помощью вдавливания отполированного стержня между двумя экструдированными полуцилиндрами (сегментами преформы). Фотография торца полученного световода приведена на рис. 5.

Рис. 5. Фотография торца одномодового сегментированного световода $AgCl_{0,5}Br_{0,5}/AgCl_{0,55}Br_{0,45}$

Для подавления оболочечных мод, которые могут возникать при засветке входного торца волокна, одномодовое кристаллическое волокно покрывалось различными поглощающими в среднем ИК диапазоне материалами: тушью, легкоплавкими сплавами, металлическим серебром. Потери в исходном волокне были измерены с помощью одномодового CO₂ лазера. Излучение лазера фокусировалось на торец волокна с помощью просветленной германиевой линзы дифракционного качества (фокусное расстояние 30 мм). Оптимальные расстояния для модового согласования с учетом параметров гаусового пучка лазера находились с помощью программы MATLAB. Входная мощность составила 5 Вт, выходная – 3,6 Вт. С учетом френелевского отражения на входном и выходном торцах, эффективности возбуждения основной моды и длины световода потери в световоде не превосходят 0,8 дБ/м, что является рекордным значением для одномодовых на 10,6 мкм световодов данного типа.

Распределения излучения в ближнем и дальнем поле были изучены с помощью ИК-камеры Spiricon Pyrocam-3 (рис. 6).

Рис. 6. Изображение поля фундаментальной моды в ближней зоне сегментного световода AgCl_{0.5}Br_{0.5}/AgCl_{0.55}Br_{0.45}

2.3. Одномодовые световоды с большой разницей показателей преломления

Наличие внутренних напряжений (оценка 20 МПа в¹) в поликристаллической структуре экструдированного оболочечного световода из-за высоких фотоупругих постоянных галогенидов серебра приводит к значительному двулучепреломлению. Это у световодов с малой разницей в показателях преломления сердцевины и оболочки приводит к большей связи фундаментальной моды с другими модами. Поэтому нами были разработаны, экструдированы и исследованы одномодовые на 10,6 мкм волокна с **большой** разницей показателей преломления сердцевины и оболочки из составов AgCl_{0,25}Br_{0,75} для сердцевины и AgCl_{0,5}Br_{0,5} для оболочки. Разница в составе AgCl_xBr_{1-x} сердцевины и оболочки была $\Delta x \approx 0,25$, что соответствует разнице показателей преломления $\Delta n = n_{co} - n_{cl} \approx 0,05$. Для обеспечения одномодового режима в волокне с круглым поперечным сечением сердцевины и со ступенчатым профилем показателя преломления волновой параметр $V = k\rho(n_{co}^2 - n_{cl}^2)^{1/2}$ должен быть меньше $V < V_0 = 2,405$, где $k = 2\pi/\lambda$, ρ – диаметр сердцевины. Таким образом, диаметр сердцевины должен быть меньше, чем $d(\lambda, NA) = \lambda V_0 / \pi NA$, где NA – числовая апертура волокна. Для длины $\lambda = 10,6$ мкм максимальный диаметр сердцевины, при котором реализуется одномодовый режим для световода данного состава, должен быть d = 18,5 мкм.

Одномодовые ступенчатые поликристаллические световоды с большой разницей показателя преломления имеют перспективу для генерации суперконтинума в среднем ИК диапазоне, поскольку у них нуль дисперсии сдвинут до 3 мкм, где имеются коротко импульсные лазеры (см. рис. 4).

Экструзия одномодового световода данного состава производилась двумя способами: а) однократной экструзии сегментной кристаллической преформы; б) путем нескольких последовательных экструзий преформ штабик-трубка, с учетом имеющихся наборов диаметров фильер, диаметра дорна и диаметра камеры.

3.3.1. Одномодовый сегментный световод AgCl_{0,25}Br_{0,75} / AgCl_{0,5}Br_{0,5}

Световод создавался по вновь разработанному нами методу сегментной преформы и однократной экструзии (описанному в подразд. 3.2). Для этого было необходимо проэкструдировать безоболочечное волокно диаметром 700 мкм с материалом для сердцевины AgCl_{0.25}Br_{0.75}, потом полученное волокно вставить в канал сегментированной оболочки кристалла AgCl_{0.5}Br_{0.5} с внешним диаметром 12 мм. После этого полностью кристаллическая заготовка была предварительно сдавлена, а затем экструдирована через фильеру диаметром 300 мкм. Сердцевина получившегося волокна должна иметь диаметр около 17,5 мкм в установившемся режиме течения преформы. В начальной части волокна диаметр сердцевины составил 20 мкм. Недостаток данных размеров волокна -300 мкм – в том, что при финальной экструзии возникает очень большое давление, на грани прочности пресс-штемпеля, поэтому полученный световод имел длину 1 м. Модовый состав в ближней зоне и оптические потери исследовались на коротком световоде с однократно приготовленными торцами. Излучение СО₂ лазера вводилось в сердцевину специально разработанным микрообъективом (МО), состоящим из двух просветленных германиевых линз дифракционного качества с фокусным расстоянием 10 мм и диаметром сфокусированного пятна 18 мкм. Изображение выходного торца формировалось при этом таким же МО на камеру Ругосати-4. Волокно длиной 60 см, изогнутое под 90 градусов, юстировалось, контролируя изображение поля моды на камере. При точной фокусировке в сердцевину обнаружена одна ярковыраженная фундаментальная гаусова чистая мода (рис. 7). Измерения лазерной мощности, падающей на входной МО и выходящей из МО после волокна, составили 467 и 217 мВт соответственно, пропускание всей системы МО + волокно + МО составило 46 %. Энергетические потери на каждом МО на длине волны 10,6 мкм составляли 19 %. Оптические потери *А*, дБ/м, определяются по формуле:

$$A = (10/L)\log((P_{in} \cdot 16n^2)/(P_{out}(1+n)^4)),$$
(5)

где L – длина световода; P_{in} – входная мощность; P_{out} – выходная мощность из волокна; n – показатель преломления сердцевины. Оптические потери на длине волны 10,6 мкм в этом одномодовом световоде составили 0,5 дБ/м, что является наименьшим значением из известных нам в мире. Порог лазерного разрушения этого световода непрерывным излучением CO₂ лазера, наступившего по истечении 20 мин, составил 200 кВт/см². Эта плотность мощности превышает в несколько раз данные, опубликованные ранее, для световодов из галогенидов серебра.

Рис. 7. Изображение поля фундаментальной моды в ближней зоне сегментного световода $AgCl_{0,25}Br_{0,75}$ / $AgCl_{0,5}Br_{0,5}$

3.3.2. Многократная экструзия преформ штабик-трубка

Этот способ предполагает следующие этапы. В начале экструдируется безоболочечное волокно с материалом сердцевины $AgCl_{0,25}Br_{0,75}$ через фильеру диаметром 3,8 мм, затем вышеуказанным способом это волокно вставляется в выдавленный канал в кристалле оболочки $AgCl_{0,5}Br_{0,5}$, затем продавливается через фильеру диаметром 3,8 мм. Потом получившееся волокно опять вышеуказанным способ вставляется в оболочку $AgCl_{0,5}Br_{0,5}$ и экструдируется через фильеру диаметром 0,5 мм. В полученном волокне диаметр сердцевины составляет около 17 мкм. Недостаток данного способа в необходимости 3 экструзий и нагревов и, как следствие, повышенном расходе исходных материалов и высоких оптических потерях.

Фотография торца такого одномодового световода приведена на рис. 8.

Рис. 8. Фотография торца одномодового световода $AgCl_{0,25}Br_{0,75}$ / $AgCl_{0,5}Br_{0,5}$ с суммарным диаметром 500 мкм

Выводы

Впервые разработаны и изготовлены методом экструзии одномодовые поликристаллические световоды среднего ИК диапазона с длиной волны отсечки 10 мкм с оптическими потерями фундаментальной моды меньше 1 дБ/м на длине волны 10,6 мкм CO₂ лазера.

Измеренные оптические потери сегментированного одномодового поликристаллического световода с малым контрастом 0,01 показателя преломления $AgCl_{0,5}Br_{0,5}/AgCl_{0,55}Br_{0,45}$ составили 0,8 дБ/м.

Впервые разработано и изготовлено поликристаллическое сегментированное одномодовое на длине волны 10,6 мкм волокно со ступенчатым профилем и с высоким контрастом 0,05 показателя преломления $AgCl_{0,25}Br_{0,75}$ / $AgCl_{0,5}Br_{0,5}$ и наименьшими в мире оптическими потерями 0,5 дБ/м, известными авторам. Порог лазерного разрушения этого одномодового световода от мощности непрерывного CO_2 лазера, наступившего за 20 мин, составил величину 200 кВт/см².

Впервые изготовлены одномодовые поликристаллические нано- и микроструктурированные экструзионные световоды галогенидов серебра с сердцевиной с наименьшим диаметром 17 мкм.

Авторы благодарят Российский научный фонд за финансирование (грант РНФ № 19-12-09134).

Список литературы

1. Butvina L. Polycrystalline Fibers // Infrared Fiber Optics / Ed. by J.S. Sanghera, I.D. Aggarwal. – CRC Press, Boka Raton, 1998. – P. 209–249.

2. Crystalline silver halide fibers with optical losses lower than 50 dB/km in broad IR region and their applications / L.N. Butvina, E.M. Dianov, N.V. Lichkova, V.N. Zagorodnev, L. Kupper // Proceedings of SPIE. – 2000. – Vol. 4083. – P. 238–253.

3. Single-mode microstructured optical fiber for the middle infrared / L.N. Butvina, O.V. Sereda, E.M. Dianov, N.V. Lichkova, V.N. Zagorodnev // Opt. Lett. – 2007. – Vol. 32. – P. 334–336.

4. Одномодовые кристаллические волоконные световоды для длины волны λ = 10,6 мкм / Л.Н. Бутвина, О.В. Середа, Е.М. Дианов, Н.В. Личкова, В.Н. Загороднев, В.Р. Сороченко // Квантовая электроника. – 2007. – Т. 37 (4). – С. 385–387.

5. Silver halide single-mode fibers with improved properties in the middle infrared / T. Lewi, S. Shalem, A. Tsun, A. Katzir // Applied Physics Lett. -2007. -91. -251112.

6. Heise H.M., Kupper L., Butvina L.N. Bio-Analytical Applications of Mid-Infrared Spectroscopy Using Silver Halide Fiber-Optic Probes // Spectrochim. Acta B. – 2002. – 57 (10). – P. 1649–1663.

7. Low loss micro and nano structured single mode crystalline fibers for 5-15 μ m / L.N. Butvina, A.G. Okhrimchuk, A.L. Butvina, E.M. Dianov, N.V. Lichkova, V.N. Zagorodnev // Advances in Optical Materials. Paper# AIThD4. – 2011.

References

1. Butvina L. Polycrystalline Fibers. *Infrared Fiber Optics*. Eds. Sanghera ByJ.S., Aggarwal I.D. CRC Press, Boka Raton, 1998, pp. 209-249.

2. Butvina L.N., Dianov E.M., Lichkova N.V., Zagorodnev V.N., Kupper L. Crystalline silver halide fibers with optical losses lower than 50 dB/km in broad IR region and their applications. *Proceedings of SPIE*, 2000, vol. 4083, pp. 238-253.

3. Butvina L.N., Sereda O.V., Dianov E.M., Lichkova N.V., Zagorodnev V.N. Single-mode microstructured optical fiber for the middle infrared. *Opt. Lett.*, 2007, vol. 32, pp. 334-336.

4. Butvina L.N., Sereda O.V., Dianov E.M., Lichkova N.V., Zagorodnev V.N., Sorochenko V.R. Odnomodovye kristallicheskie volokonnye svetovody dlia dliny volny $\lambda = 10,6$ mkm [Single-mode crystalline fibers for wavelength $\lambda = 10.6$ µm]. *Kvantovaia elektronika*, 2007, vol. 37(4), pp. 385-387.

5. Lewi T., Shalem S., Tsun A., Katzir A. Silver halide single-mode fibers with improved properties in the middle infrared. *Applied Physics Lett.*, 2007, 91, 251112.

6. Heise H.M., Kupper L., Butvina L.N. Bio-Analytical Applications of Mid-Infrared Spectroscopy Using Silver Halide Fiber-Optic Probes. *Spectrochim. Acta B*, 2002, 57(10), pp. 1649-1663.

7. Butvina L.N., Okhrimchuk A.G., Butvina A.L., Dianov E.M., Lichkova N.V., Zagorodnev V.N. Low loss micro and nano structured single mode crystalline fibers for 5-15 μ m. *Advances in Optical Materials*. Paper# AIThD4, 2011.

Получено 27.10.2020