УДК 621.372

К.А. Овчинников^{1,2}, Д.Г. Гилев^{1,2}, В.В. Криштоп^{1,2}

¹Пермская научно-производственная приборостроительная компания, Пермь, Российская Федерация ²Пермский национальный исследовательский политехнический университет, Пермь, Российская Федерация

ОПРЕДЕЛЕНИЕ ТЕМПЕРАТУРНОГО КОЭФФИЦИЕНТА ИЗМЕНЕНИЯ ПОЛУВОЛНОВОГО НАПРЯЖЕНИЯ ФАЗОВОГО МОДУЛЯТОРА НА LINBO₃

Проведены измерения полуволнового напряжения интегрально-оптического фазового модулятора на LiNbO $_3$ в диапазоне температур от -40 до +60 °C. Измерения проводились двумя методиками с применением интерферометра Саньяка и Маха–Цандера. Температурные коэффициенты изменения полуволнового напряжения, полученные в экспериментах, согласуются с теоретическими.

Ключевые слова: интегрально-оптический модулятор, ниобат лития, схема интегральнооптическая многофункциональная, фазовый модулятор, полуволновое напряжение.

K.A. Ovchinnikov^{1,2}, D.G. Gilev^{1,2}, V.V. Krishtop^{1,2}

¹Perm Scientific and Production Instrument-Making Company, Perm, Russian Federation ²Perm National Research Polytechnic University, Perm, Russian Federation

DETERMINATION OF TEMPERATURE COEFFICIENT OF CHANGE HALF-WAVE VOLTAGE PHASE MODULATOR ON LINBO₃

Measurements of the half-wave voltage of the integrated-optical phase modulator on LiNbO3 were carried out in the temperature range from -40 to +60 °C. The measurements were carried out by two methods using the Sagnac and Mach-Zehnder interferometers. The temperature coefficients of the half-wave voltage change obtained in the experiments agree with the theoretical ones.

Keywords: integrated-optical modulator, lithium niobate, multifunctional integrated-optical circuit, phase modulator, half-wave voltage.

Введение

Фазовые модуляторы сейчас находят большое применение в сфере телекоммуникаций, квантовых коммуникаций и т.д., особое место занимают фазовые модуляторы СИОМ (схемы интегрально-оптические многофункциональные), используемые при разработке и производстве волоконно-оптических датчиков, таких как волоконно-оптические гироскопы (ВОГ) или резонаторные волоконно-оптические гироскопы (РВОГ) [1–3]. Величина полуволнового напряжения в таких модуляторах является важным параметром, поскольку определяет величину фазового смещения оптического сигнала при подаче напряжения на модулятор [4]. В ВОГ положение рабочей точки определяет чувствительность будущего изделия и изменение полуволнового напряжения смещает рабочую точку, что может отражаться на итоговых параметрах ВОГ [5].

Последние годы много исследований посвящено разработке и исследованию резонаторных волоконно-оптических гироскопов (РВОГ), и на данный момент разработано множество схем РВОГ. Многие из разработанных схем работают на высококогерентном излучении и включают в себя интегрально-оптические фазовые модуляторы [6–8]. Недавно представлены РВОГ, работающие на широкополосном излучении с применением фазовой модуляции [9–11]. Для корректной работы обоих видов схем необходима стабильная работа фазового модулятора во всем температурном диапазоне.

Измерение полуволнового напряжения фазовых модуляторов является важным этапом при проектировании оптических устройств. Методы измерения зависят от конкретного типа модулятора и требуемой точности. Для наиболее точного определения применяются такие устройства, как фазометры, векторные анализаторы или анализаторы спектра. Часто бывает, что выбор метода ограничен доступным оборудованием. В данной статье рассмотрены простые методы измерения полуволнового напряжения при разных температурах с применением источников излучения разной степени когерентности, генератора электрических сигналов, фотоприёмного модуля и осциллографа.

В данной работе проводится измерение величины полуволнового напряжения СИОМ на ниобате лития (LiNbO₃) в диапазоне температур от -40 до +60 °C двумя методиками.

1. Объект исследования

СИОМ представляет собой интегрально-оптическую схему, состоящую из системы канальных оптических волноводов и параллельной им системы электродов (рис. 1). Топология СИОМ представляет собой симметричный У-разветвитель для деления входной оптической мощности в равных пропорциях (50/50). Около волноводов, образующих У-разветвитель, напыляют электроды. Поскольку ниобат лития, из которого изготовлен СИОМ, является электрооптическим материалом, показатель преломления которого является функцией приложенного к ним электрического поля, то при подаче напряжения на электроды происходит изменение показателя преломления в волноводах [12]. Выходное излучение из-за различия показателей преломления в плечах У-делителя приобретает разность фаз.

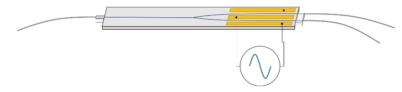


Рис. 1. Топология СИОМ

Для LiNbO₃ изменение показателя преломления Δn линейно пропорционально приложенному электрическому полю E:

$$\Delta n = \alpha_{EO} E, \tag{1}$$

где α_{EO} — линейный электрооптический коэффициент волновода, определяемый материалом.

Важным параметром модулятора является полуволновое напряжение V_{π} [12], которое определяется как напряжение, необходимое для изменения фазы оптического сигнала на π . V_{π} можно найти как

$$V_{\pi} = \frac{\lambda d}{2\alpha_{EO}L},\tag{2}$$

где L и d — длина электродов и расстояние между электродами соответственно, λ — длина волны оптического излучения.

Электрооптический коэффициент волновода, в свою очередь, можно определить, как

$$\alpha_{EO} \approx -\frac{1}{2} n_e^3 r_{33},\tag{3}$$

где n_e — показатель преломления ниобата лития для необыкновенного луча, r_{33} — электрооптический коэффициент ниобата лития.

При изменении температуры основной вклад в изменение полуволнового напряжения будут вносить изменение показателя преломления n_e и электрооптического коэффициента ниобата лития. Зависимость полуволнового напряжения V_{π} от температуры T можно записать как

$$V_{\pi}\left(T\right) = V_{\pi 0} + \frac{dV_{\pi}}{dT}T,\tag{4}$$

где $V_{\pi 0}$ – полуволновое напряжение модулятора при температуре 0 °C.

Изменение полуволнового напряжения с температурой запишется так:

$$\frac{dV_{\pi}}{dT} = \frac{\lambda d}{2L} \frac{d\left(1/\alpha_{EO}\right)}{dT} = -V_{\pi 0} \frac{1}{\alpha_{EO}} \frac{d\alpha_{EO}}{dT}.$$
 (5)

В свою очередь, изменение электрооптического коэффициента волновода с температурой примет вид:

$$\frac{d\alpha_{EO}}{dT} = -\frac{1}{2}E_z \frac{dn_e^3}{dT}r_{33} - \frac{1}{2}E_z n_e^3 \frac{dr_{33}}{dT} = \alpha_{EO} \left(\frac{3}{n_e} \frac{dn_e}{dT} + \frac{1}{r_{33}} \frac{dr_{33}}{dT}\right).$$
 (6)

Таким образом, учитывая (5) и (6), уравнение (4) примет вид:

$$V_{\pi}(T) = V_{\pi 0} \left(1 + \kappa T \right), \tag{7}$$

где κ — температурный коэффициент полуволнового напряжения, который можно записать так:

$$\kappa = -\left(\frac{3}{n_e} \frac{dn_e}{dT} + \frac{1}{r_{33}} \frac{dr_{33}}{dT}\right).$$
 (8)

Величина показателя преломления n_e ниобата лития для длины волны 1550 нм составляет 2,138, dn_e/dT — температурный коэффициент показателя преломления и составляет 3,91·10⁻⁵ K⁻¹ [13], а величина $\frac{1}{r_{33}} \frac{dr_{33}}{dT}$ составляет 4,9·10⁻⁴ K⁻¹ [14]. Таким образом, температурный коэффициент полуволнового напряжения $\kappa \approx -5,2\cdot10^{-4}$ K⁻¹.

2. Методики измерения

2.1. Интерферометр Маха – Цандера

Для измерения полуволнового напряжения СИОМ собирается интерферометр Маха — Цандера, образованный фазовым модулятором и волоконным делителем (С1), как показано на рис. 2.

Рис. 2. Схема интерферометра Маха – Цандера для измерения полуволнового напряжения

С генератора подается пилообразное напряжение, амплитуда которого значительно превышает значение полуволнового напряжения. На фотоприемнике (ФП) наблюдается гармонический сигнал, представляющий передаточную характеристику интерферометра (рис. 3) [15]. Разница напряжений пилообразного сигнала между моментами времени, когда интерференционная картина достигает минимального значения, соответствует удвоенному значению полуволнового напряжения.

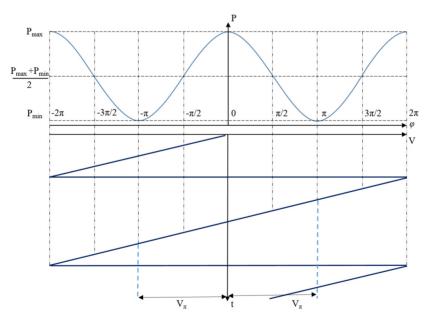


Рис. 3. Передаточная характеристика интерферометра и связь с подаваемой пилообразной модуляцией на СИОМ

Данный метод позволяет получить не только значение полуволнового напряжения, но также самой передаточной характеристики интерферометра. Использование лазерного источника обусловливается высокой длиной когерентности, поскольку при создании волоконного интерферометра сложно соблюсти равенство плеч интерферометра [16]. В случае использования широкополосного источника излучения может возникнуть ситуация, когда интерференционная картина не будет наблюдаться из-за превышения максимальной разницы между плечами интерферометра, определяемой длиной когерентности. Так, например, при использовании суперлюминесцентного диода (СЛД) с центральной длиной волны 1550 нм и шириной спектра 10 нм длина когерентности составит 240 мкм. Такая длина когерентности не позволит провести измерение с волоконным интерферометром Маха — Цандера, т.е. СЛД не пригоден для такого метода измерений.

2.2. Интерферометр Саньяка

Второй метод основан на применении интерферометра Саньяка, представленного на рис. 4 [17], в котором излучение от СЛД проходит через циркулятор (С2), затем разделяется на два пучка в СИОМ. Далее оба пучка проходят по волоконному контуру (ВК) во встречных направлениях и снова возвращаются в СИОМ, где объединяются и после прохождения через С2 интерферируют на ФП.

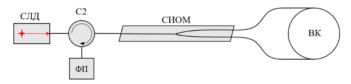


Рис. 4. Схема интерферометра Саньяка для измерения полуволнового напряжения

С генератора подается прямоугольный сигнал на собственной частоте интерферометра. Собственная частота определяется длиной ВК как [4]

$$f_p = \frac{1}{2\Delta \tau} = \frac{c}{2nL},\tag{9}$$

где $\Delta \tau$ – время обхода контура, с – скорость света в вакууме, n – показатель преломления волокна, L – длина ВК.

Амплитуда сигнала модуляции $A_{\rm mod}$ при измерениях изменяется между двумя положениями:

- $A_{\text{mod }1} < V_{\pi}$, при этом мощность на фотоприемнике $P_1: P_{\text{min}} < P_1 < P_{\text{max}}$;
- $A_{\text{mod}_2} > V_{\pi}$, при этом A_{mod_2} подбирается таким образом, что мощность на фотоприемнике $P_2 = P_1$.

Среднее значение между A_{mod_1} и A_{mod_2} будет соответствовать значению V_{π} (рис. 5).



Рис. 5. Передаточная характеристика интерферометра Саньяка и связь с подаваемой прямоугольной модуляцией

Для большей точности A_{mod_1} и A_{mod_2} следует выбирать вблизи напряжения, соответствующего разности фаз $\pi/2$, поскольку в этой области проявляется наибольшая чувствительность.

Данный метод позволяет использовать широкополосное излучение, поскольку интерферирующее излучение проходит один и тот же путь, но в разных направлениях, и разность хода, вызванная различием длин оптических путей, не возникает. Узкополосное лазерное излучение с большой длиной когерентности в данном случае, из-за наличия обратного рассеяния и отражения, вызывает паразитную интерференцию, которая вносит изменения в форму сигнала и, соответственно, большую погрешность в измерения [18].

3. Результаты эксперимента

В ходе эксперимента проведены измерения полуволнового напряжения СИОМ двумя методиками в диапазоне температур -40...+60 °C. СИОМ помещался в термокамеру, внутри которой температура изменялась в диапазоне от -40 до +60 °C с шагом в 10 °C. Исследуемый образец выдерживался час на каждом шаге для установления постоянной температуры внутри камеры и вокруг СИОМ. По данным измерениям построены графики зависимости $V_{\pi}(T)$, приведенные на рис. 6.

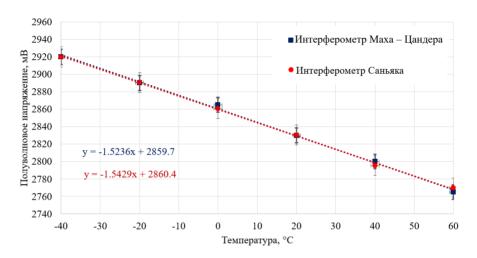


Рис. 6. Графики зависимости полуволнового напряжения СИОМ от температуры, полученные при измерении двумя методиками

По данным графикам определены полуволновое напряжение при температуре 0 °C, а также температурный коэффициент полуволнового напряжения κ для исследуемого образца СИОМ производства ПАО «ПНППК». Данные приведены в таблице.

	Методика измерения		
Параметр	Теоретический	Интерферометр	Интерферометр
	расчет	Маха – Цандера	Саньяка
$V_{\pi0}$, мВ	2860,0	$2859,7 \pm 9,5$	$2860,4 \pm 9,4$
κ, 10 ⁻⁴ K ⁻¹	-5,2	-5,32	-5,39

Полученные значения к близки к теоретическим расчетам, что свидетельствует о хорошей точности применяемых методик измерения.

Заключение

В данной работе представлены методики измерения полуволнового напряжения фазового модулятора СИОМ. Измерены значения полуволнового напряжения и температурного коэффициента изменения полуволнового напряжения. Полученные значения температурного коэффициента близки к теоретическому, что свидетельствует о высокой точности представленных методик измерения. Данный коэффициент является важной характеристикой СИОМ при проектировании волоконноптических гироскопов. Проверка обеих методик с использованием излучения с разной степенью когерентности была важной задачей, поскольку последние годы ведется активная разработка резонаторных волоконно-оптических гироскопов, в которых возможно применение обоих типов излучения.

Список литературы

- 1. Fiber optic resonators for angular rate sensors / D.G. Gilev, K.A. Ovchinnikov, V.V. Krishtop [et al.] // Bull. Russ. Acad. Sci. Phys. 2022. Vol. 86 (Suppl 1). P. S75–S80. DOI: 10.3103/S1062873822700423
- 2. A prototype for a passive resonant interferometric fiber optic gyroscope with a 3 × 3 directional coupler / K.A. Ovchinnikov, D.G. Gilev, V.V. Krishtop, A.B. Volyntsev, V.A. Maximenko, A.A. Garkushin, Y.V. Filatov, A.S. Kukaev, A.A. Sevryugin, E.V. Shalymov [et al.] // Sensors. 2023. P. 23. P. 1319. DOI: org/10.3390/s23031319
- 3. Experimental investigation of an optical resonator gyroscope with a Mach Zehnder modulator and its sensitive elements / Y.V. Filatov, D.G. Gilev, P.S. Goncharova, V.V. Krishtop, A.S. Kukaev, K.A. Ovchinnikov, A.A. Sevryugin, E.V. Shalymov, V.Y. Venediktov // Photonics. 2023. Vol. 10. P. 4. DOI: 10.3390/photonics10010004
- 4. Lefevre, Herve. The Fiber-Optic Gyroscope / Herve Lefevre // Third Edition. Artech, 2022.
- 5. Performance improvement of white-light-driven resonant fiber optic gyroscope using four-frequency sawtooth wave modulation technology / Wu Fan, Li Jun, Lan Shiqi, Yan Bo, Zhou Jun, Yue Yazhou // Optics Communications. 2023. Vol. 550. P. 129827. DOI: 10.1016/j.optcom.2023.129827
- 6. Wang Linglan, Yan Yuchao, Ma Huilian, Jin Zhonghe. Research progress of the resonant fiber optic gyroscope technology. 2015. 967906. DOI: 10.1117/12.2197580

- 7. Resonant fiber optic gyroscope using a reciprocal modulation and double demodulation technique / L. Liu, S. Liu, J. Hu, H. Ma, Z. Jin // Opt Express. 2022. Mar 28. Vol. 30(7). P. 12192–12203. DOI: 10.1364/OE.458596. PMID: 35473145
- 8. Terrel, Matthew. Resonant fiber optic gyroscope using an air-core fiber / Matthew Terrel, Michel Digonnet, Shanhui Fan // IEEE/OSA Journal of Lightwave Technology J. Lightwave Technol. 2012. Vol. 30. P. 931–937. DOI: 10.1109/JLT.2011.2177959
- 9. Navigation-grade resonant fiber-optic gyroscope using ultra-simple white-light multibeam interferometry / Shuangxiang Zhao, Qingwen Liu, Yuanyuan Liu, Huilian Ma, Zuyuan He // Photon. Res. 2022. Vol. 10. P. 542–549.
- 10. Closed-loop resonant fiber-optic gyroscope with a broadband light source / J. Hu, S. Liu, L. Liu, H. Ma // Journal of Lightwave Technology. 2023. Vol. 41, no. 18. P. 6088–6093. 15 Sept.15. DOI: 10.1109/JLT.2023.3270443
- 11. Performance improvement of white-light-driven resonant fiber optic gyroscope using four-frequency sawtooth wave modulation technology / Fan Wu, Jun Li, Shiqi Lan, Bo Yan, Jun Zhou, Yazhou Yue // Optics Communications. 2024. Vol. 550. P. 129827. DOI: 10.1016/j.optcom.2023.129827
- 12. Rongqing, Hui, Chapter 7: External electro-optic modulators. Editor(s): Rongqing Hui, Introduction to Fiber-Optic Communications. Academic Press. 2020. P. 299–335. DOI: 10.1016/B978-0-12-805345-4.00007-X
- 13. Smith, D.S. Refractive indices of lithium niobate / D.S. Smith, H.D. Riccius, R.P. Edwin // Optics Communications. 1976. Vol. 17, Iss. 3. P. 332–335. DOI: 10.1016/0030-4018(76)90273-X
- 14. Zook, J.D. Temperature dependence and model of the electro-optic effect in LiNbO3 / J.D. Zook, D. Chen, G.N. Otto // Applied Physics Letters. 1967. Vol. 11, no. 5. P. 159–161.
- 15. Афанасьев, В.М. Определение величины полуволнового напряжения электрооптического модулятора интенсивности излучения на основе интерферометра Маха Цендера / В.М. Афанасьев, Р.С. Пономарев // Прикладная фотоника. 2020. Т. $7, \, N\!\!\!_{\, 2} 1.$ С. 16—24.
- 16. Application of optical frequency domain reflectometry for the study of polarization maintaining fibers / K.A. Ovchinnikov, D.G. Gilev, V.V. Krishtop [et al.] // Bull. Russ. Acad. Sci. Phys. 2022. Vol. 86 (Suppl 1). P. S156–S162. DOI: 10.3103/S1062873822700599
- 17. Измерение величины двулучепреломления волокна типа Panda с помощью интерферометра Саньяка / К.А. Овчинников, В.В. Криштоп, Д.Г. Гилев, В.А. Максименко, А.В. Перминов // Изв. вузов. Приборостроение. 2023. T. 66, № 10. C. 845 851. DOI: 10.17586/0021 3454 2023 66 10 845 851
- 18. Signal processing improvement of passive resonant fiber optic gyroscope using a reciprocal modulation-demodulation technique / Hanzhao Li, Yi Lin, Lu Liu, Huilian Ma, ZHonghe Jin // Opt. Express. 2020. Vol. 28. P. 18103–18111.

References

- 1. Gilev D.G., Ovchinnikov K.A., Krishtop V.V. et al. Fiber optic resonators for angular rate sensors. *Bull. Russ. Acad. Sci. Phys.*, 2022, vol. 86, pp. S75-S80.
- 2. Ovchinnikov K.A., Gilev D.G., Krishtop V.V., Volyntsev A.B., Maximenko V.A., Garkushin A.A., Filatov Y.V., Kukaev A.S., Sevryugin A.A., Shalymov E.V. et al. A prototype for a passive resonant interferometric fiber optic gyroscope with a 3×3 directional coupler. *Sensors*, 2023, vol. 23, p. 1319.
- 3. Filatov Y.V., Gilev D.G., Goncharova P.S., Krishtop V.V., Kukaev A.S., Ovchinnikov K.A., Sevryugin A.A., Shalymov E.V., Venediktov V.Y. Experimental investigation of an optical resonator gyroscope with a Mach Zehnder modulator and its sensitive elements. *Photonics*, 2023, vol. 10, p. 4.
 - 4. Lefevre H. The Fiber-Optic Gyroscope. Third Edition. Artech, 2022.
- 5. Wu F., Li J., Lan S., Yan B., Zhou J., Yue Y. Performance improvement of white-light-driven resonant fiber optic gyroscope using four-frequency sawtooth wave modulation technology. *Optics Communications*, 2023, vol. 550, p. 129827.
- 6. Wang L., Yan Y., Ma H., Jin Z. Research progress of the resonant fiber optic gyroscope technology. *Proceedings of Applied Optics and Photonics China*, 2015, p. 967906.
- 7. Liu L., Liu S., Hu J., Ma H., Jin Z. Resonant fiber optic gyroscope using a reciprocal modulation and double demodulation technique. *Optics Express*, 2022, vol. 30, no. 7, pp. 12192-12203.
- 8. Terrel M., Digonnet M., Fan S. Resonant fiber optic gyroscope using an air-core fiber. *Journal of Lightwave Technology*, 2012, vol. 30, pp. 931-937.
- 9. Zhao S., Liu Q., Liu Y., Ma H., He Z. Navigation-grade resonant fiber-optic gyroscope using ultra-simple white-light multibeam interferometry. *Photon. Res.*, 2022, vol. 10, pp. 542-549.
- 10. Hu J., Liu S., Liu L., Ma H. Closed-loop resonant fiber-optic gyroscope with a broadband light source. *Journal of Lightwave Technology*, 2023, vol. 41, no. 18, pp. 6088-6093.
- 11. Wu F., Li J., Lan S., Yan B., Zhou J., Yue Y. Performance improvement of white-light-driven resonant fiber optic gyroscope using four-frequency sawtooth wave modulation technology. *Optics Communications*, 2024, vol. 550, p. 129827.
- 12. Hui R. Chapter 7: External electro-optic modulators. Introduction to Fiber-Optic Communications. Ed. R. Hui. Academic Press, 2020, pp. 299-335.
- 13. Smith D.S., Riccius H.D., Edwin R.P. Refractive indices of lithium niobate. *Optics Communications*, 1976, vol. 17, no. 3, pp. 332-335.
- 14. Zook J.D., Chen D., Otto G.N. Temperature dependence and model of the electro-optic effect in LiNbO3. *Applied Physics Letters*, 1967, vol. 11, no. 5, pp. 159-161.
- 15. Afanas'ev V.M., Ponomarev R.S. Opredelenie velichiny poluvolnovogo napriazheniia elektroopticheskogo moduliatora intensivnosti izlucheniia na osnove

interferometra Makha – Tsendera [Experimental determination of the half-wave voltage of the Mach-Zender electro-optical amplitude modulator]. *Applied Photonics*, 2020, vol. 7, no. 1, pp. 16-24.

- 16. Ovchinnikov K.A., Gilev D.G., Krishtop V.V. et al. Application of optical frequency domain reflectometry for the study of polarization maintaining fibers. *Bull. Russ. Acad. Sci. Phys.*, 2022, vol. 86, pp. S156-S162.
- 17. Ovchinnikov K.A., Krishtop V.V., Gilev D.G., Maksimenko V.A., Perminov A.V. Izmerenie velichiny dvulucheprelomleniia volokna tipa Panda s pomoshch'iu interferometra San'iaka [Measuring the birefringence value of a Panda fiber using a Sagnac interferometer]. *Journal of Instrument Engineering*, 2023, vol. 66, no. 10, pp. 845-851.
- 18. Li H., Lin Y., Liu L., Ma H., Jin Z. Signal processing improvement of passive resonant fiber optic gyroscope using a reciprocal modulation-demodulation technique. *Opt. Express*, 2020, vol. 28, pp. 18103-18111.

Сведения об авторах

ОВЧИННИКОВ К.А.

e-mail: OvchinnikovKA@pnppk.ru

Аспирант, начальник лаборатории, Научно-исследовательский институт радиофотоники и оптоэлектроники ПАО «Пермская научно-производственная приборостроительная компания», научный сотрудник кафедры общей физики, Пермский национальный исследовательский политехнический университет, г. Пермь, Российская Федерация

About the authors

K.A. OVCHINNIKOV

e-mail: OvchinnikovKA@pnppk.ru

PhD student, head of laboratory, Research Institute of Radiophotonics and Optoelectronics Perm Scientfic-Industrial Instrument-Making Company, researcher at the Department of General Physics, Perm National Research Polytechnic University, Perm, Russian Federation

ГИЛЕВ Д.Г.

e-mail: GilevDG@pnppk.ru

Кандидат технических наук, начальник бюро, Научно-исследовательский институт радиофотоники и оптоэлектроники ПАО «Пермская научно-производственная приборостроительная компания», научный сотрудник кафедры общей физики, Пермский национальный исследовательский политехнический университет, г. Пермь, Российская Федерация

D.G. GILEV

e-mail: GilevDG@pnppk.ru

PhD in Technical Sciences, bureau chief, Research Institute of Radiophotonics and Optoelectronics Perm Scientfic-Industrial Instrument-Making Company, researcher at the Department of General Physics, Perm National Research Polytechnic University, Perm, Russian Federation

КРИШТОП В.В.

e-mail: Krishtop@pnppk.ru

Доктор физико-математических наук, профессор Пермского национального исследовательского политехнического университета, главный научный сотрудник Научно-исследовательского инстиута радиофотоники и оптоэлектроники ПАО «Пермская научно-производственная приборостроительная компания», г. Пермь, Российская Федерация

V.V. KRISHTOP

e-mail: Krishtop@pnppk.ru

Doctor of Physical and Mathematical Sciences, Professor, Perm National Research Polytechnic University, Chief Researcher of the Research Institute of Radiophotonics and Optoelectronics, Perm Scientific and Production Instrument Making Company, Perm, Russian Federation

Финансирование. Исследования выполнены при поддержке Министерства науки и высшего образования Российской Федерации (проект № FSNM-2023-0006).

Конфликт интересов. Авторы заявляют об отсутствии конфликта интересов.

Вклад авторов равноценный.

Получена: 15.04.2024 Одобрена: 18.04.2024

Принята к публикации: 19.04.2024

Financing. The research was carried out with the support of the Ministry of Science and Higher Education of the Russian Federation (project No. FSNM-2023-0006).

Conflict of Interest. The authors declare no conflict of interest. **The authors' contribution is equal.**

Received: 15/04/2024 **Approved:** 18/04/2024

Accepted for publication: 19/04/2024

Просьба ссылаться на эту статью в русскоязычных источниках следующим образом: Овчинников, К.А. Определение температурного коэффициента изменения полуволнового напряжения фазового модулятора на LiNbO₃ / К.А. Овчинников, Д.Г. Гилев, В.В. Криштоп // Прикладная фотоника. -2024. -T. 11, № 2. -C. 36–48.

Please cite this article in English as: Ovchinnikov K.A., Gilev D.G., Krishtop V.V. Determination of temperature coefficient of change half-wave voltage phase modulator on LiNbO₃. *Applied photonics*, 2024, no. 2, pp. 36-48.